CS200 LECTURE 9
DISTRIBUTED ALGORITHMS

Po Hao Chen
June 4, 2023

BOSTON

UNIVERSITY

Why Distributed Algorithms?

Why Distributed Algorithms?
0800000000000 0

Historical Context

® So far, sequential algorithms

| inta

® CPUs used to be single core,
pentium’ 4

\ not anymore!

® Distributed (parallel) algorithms
make better use of hardware

Why Distributed Algorithms?
[e]e] lelelelele]elelelo]o]e]

Parallelism

So, what is paratism anyways?

* .
parallelism
Sel e o =
Master Thread
Parallel Task | Parallel Task Il Parallel Task IIl
Master Thread I I
- —
Parallel: / E 4
<] . « S -
I ®
5 __5 o

Why Distributed Algorithms?
0008000000000 0

Why Parallelism?

Example: Climate Simulation Model

® Modeling the exchange of
matter and energy over time.
® Wind and water currents
® Atompbheric pressure
® Weather tracking
® How?
® Cut globe into square grid
® Equation characterize energy
movement
® Solving equations repeatedly

4 steps: Decomposition,
Assignment, Orchestration,
Mapping.

Why Distributed Algorithms?
0000800000000 0

Speedup

How much of a speedup can we actually get?

Depends on code itself
Amdahl's Law -

1
® p - fraction of original execution time that can be optimized
® s - speedup of optimized code over original code

This throws practical applications in the face of theory

e distinction of 0(2n) and 0(n)

Why Distributed Algorithms?
0000080000000 0

What are parallelizable?

® Parallel execution is possible if the execution is tolerant of iteration
reordering.

® Strategy: Look for decomposition oppurtunity in which parallel tasks
can perform similar operation in the array.

Why Dist

uted Algorithms?
000000800000 00

Examples: Fibonacci Number

Why Distributed Algorithms?
0000000000000
Example: Riemann Sums
A Y e Remember Riemann Sums?

-
X

=T o b () ‘ f(=)
Jf(l) d.\' Area

Why Distributed Algorithms?
0000000000000

Thread Creation

Programs/process usually start with 1
“master/main” thread

Program creates additional threads to
execute a specified function/code
block in parallel

Operating System schedules threads
to run on available CPUs

Task - being split up into subtasks

» Thread 1
» Thread 2
» Thread 3

» Thread 4

Why Distributed Algorithms?
000000000800 00

OpenMP

API supports shared-memory parallel programming in C, C++, and
Fortran.

® High-Level abstracted directives for application programmers and
scientists

® easy to use!

Why Distributed Algorithms?
0000000000800 0
OpenMP

e #include <omp.h>
o Imports the OpenMP library
e omp_set_num_threads(<int NUM_THREADS>);
o Inside your main function, this command sets the number of threads you want openMP to use. Usually the
same number as the number of CPU cores.
e #pragma omp parallel
o Runs the following {block of code} in each thread
e #pragma omp parallel for
o Include before for loop to divide the iterations of the loop into separate threads

e omp_get_thread_num();
o Returns the current thread inside a parallel block
e omp_get_num_threads();
o Returns the number of threads
e f#lpragma omp master
o The following {} block will only run in 1 thread
o Place inside a parallel code block
e collapse(<int number of loops>)
o Example: #pragma omp parallel for collapse(3)
o Parallelize n nested loops

10

Why Distributed Algorithms?
0000000000080

Race Condition

Race Conditions (and how to use reduction)

o When Parallel threads need to modify the same data, errors can occur

oot) [(roez) [rmes)

Shared Resource
(critical section)

a omp parallel for private(x, i) reduction integral
r (i = 0; i < num_boxes; i++) {

X = i*delta;

integral += height(x)*delta;

(calc_pi.cpp)

11

Why Distributed Algorithms?
0000000000000

Let’'s Try It

We will approximate 7 by calculating the area of the unit circle.

® |ntegrate a quadrant of the circle, i.e, fol V1—x2dx =7/4

® We discretise the integral into n vertical boxes, each with Ax = 1/n
and height = /1 — x? where x; = iAx

12

Why Distributed Algorithms?
0000000000000 e

Levels of Parallelism

Multi-node

[] []
(MP1) 1]
] e

Multi-thread
(OpenMP)

13

Message Passing Interface (MPI)

Message Passing Interface (MPI)

[e] Jelelele]ele}

Message Passing Interface (MPI)

MPI is a standard designed to
allow for parallel functionality in
a cluster

Every implementation has to

follow this standard %
Looks like function calls in code Ok ME]
(library)

Pass data between processes as

messages

® 1:1 transmit and receive

INTEL WP IBRARY 2013 STACKECOSYSTEM
CE— "
EE— E—
L =7 /o

14

Message Passing Interface (MPI)
[e]e] Jelelelele)

Hello World Example

MPI has a whole slew of new concepts

® process - instance of the program being run
® rank - unique identifier for a process (usually related to thread count)

® communicators - groups together MPI processes
(Ex. MPI_COMM_WORLD)

® finalization - clean up performed at end of MPI program

15

Message Passing Interface (MPI)

[e]e]e] lelelele}

Does MPI Work?

Let’s take a look at the example of bitonic sort.

Bitonic sorter

From Wikipedia, the free encyclopedia

‘This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may
be challenged and removed.

Find sources: "Bitonic sorer” - news - newspapers - books - scholar - SSTOR (October 2017) (Leam how and when to remove ihis template message)
Bitonic mergesort s a paraliel aigorithm for sorting. Itis also used as a construction method for building a sorting network. The algorithm was devised by Bitonic sorter
Ken Batcher, The resulting sorting networks tof O(n log? (n)) tors and have a delay of O(log? (n)), where s the number of items to be

)
)
1 !
I 1l

))\

Bitonic sort network with eight inputs.

sorted ']

I

A sorted sequence s a monotonically non-decreasing (or non-increasing) sequence. A bitonic sequence is a sequence with
2 <o < ap > >z, forsome k,0 < k < n, or acircular shift of such a sequence.

S
=

Contents [nide]

1 Complexity
2 How the aigorithm works
21 Altemative representation
3 Example code
45

b4 ¢ 49 39
S R P Y

Class Sorting algorithm

= Data structure Array
5 References g
Worst-case performance Of(log? (n)) parale time
6 External links " Oltog"(r)) pe i
Best-case performance O(log? (n)) parallel time
Average performance O(log? (n)) parallel time
Complexity (edi] Worst.case space O(nlog? (n)) non-paraliel
Letp = |logy n) and g = [log, n] CIEEY (=2
Itis obvious from the construction algorithm that the number of rounds of parallel comparisons is given by g(g + 1) /2.

It follows that the number of comparators ¢ is bounded 2~ - p(p + 1)/2 < ¢ < [n/2] - q(q + 1)/2 (which establishes an exact value for ¢ when 7t is a power of 2).

Merge Sort Runtime: 0(nlogn)
Parallel Bitonic Sort Runtime: 0(log?n)

16

Message Passing Interface (MPI)
[e]e]e]e] lelele)

Data for Bitonic Sort

Bitonic Sort Time (s) vs. MPI Processes
Intel i7-7500U @ 2.70 GHz 2¢/4t

—e—n=1024 —e—n=2048 n=_8192

01
v

o 0.01
3
&8
o
&
L]
=
o

E 0.001
]

0.0001

0.00001

1 2 a 8 16

MPI Processes Log Scale

17

Message Passing Interface (MPI)
00000800

Calculating Pi Example

Mathematicians are very concerned (perhaps to a worrying degree) about
finding all the digits of .

To date, 62.8 trillion digits of 7w have been calculated.

Leibniz f la:
eibniz formula 1 1+1 EJF}? x
35 7 9 77 4

We can calculate this in a distributed fashion!

18

Message Passing Interface (MPI)
00000080

Parallelization in Python

Using Ray for Highly Parallelizable Tasks

® For example, we may have 100,000 time series to process with
exactly the same algorithm, and each one takes a minute of
processing. (Ref. Ray Tutorial)

® let's calculate 7 by throwing darts. (Monte Carlo)

19

Message Passing Interface (MPI)
0000000e

Reference and Additional Materials

Special thanks to Carlton Knox and Benjamin Li for the contribution to
the material.

For those who are interested for more:
https://github.com/buhpc/buhpc-workshops/tree/master/openmp

20

	Why Distributed Algorithms?
	Message Passing Interface (MPI)

