LECTURE 6

BINARY SEARCH

Po Hao Chen
June 4, 2023

Generic Binary Search

Given a sorted array s.t $a_{i} \leq a_{i+1}$
Example: 2,3,4,8,10,12
Find $x=10$

$$
\begin{aligned}
& L=0, R=n-1 \\
& \text { while }(L<=R) \\
& M=L+(R-L) / 2 \\
& \text { if }(a[M]==X) \\
& \text { "Found" } \\
& \text { else if(} a[M]<X) \\
& L=M+1 \\
& \text { else }=M=M-1 \\
& R=M-1 \\
& \text { "Not Found" }
\end{aligned}
$$

Find Closest Element

Find the first element greater or equal to x
Example: 1,2,5,18,19,20
$x=3$

$$
\begin{aligned}
& \mathrm{L}=0, \mathrm{R}=\mathrm{n}-1 \\
& \text { ans }=-1 \\
& \text { while }(\mathrm{L}<=\mathrm{R}) \\
& \mathrm{M}=\mathrm{L}+(\mathrm{R}-\mathrm{L}) / 2 \\
& \text { if } \mathrm{a}[\mathrm{M}]>=\text { target } \\
& \text { ans = a[M] } \\
& \mathrm{R}=\mathrm{M}-1 \\
& \text { else } \mathrm{L}=\mathrm{M}+1 \\
& \text { return ans }
\end{aligned}
$$

Universal Binary Search

$16=$? * ? You can take the square root of the LHS.
Or you can "guess" and verify.
Formulate our problem such that our "answer" lies within some [L,R].

Universal Binary Search

$$
f(x)= \begin{cases}1 & \text { satisfies } f \\ 0 & \text { otherwise }\end{cases}
$$

000000000001111111111

Maintain $f(I)=0, f(r)=1$ (Depending on the problem)

Implementation

$R=$ "upper bound value"
while ($\mathrm{L}<=\mathrm{R}$)

Step 1: Choose your L,R
Step 2: Implement $f(x)$
Step 3: Apply the framework

$$
m=L+(R-L) / 2
$$

$$
\text { if }(f(\mathrm{~m}))
$$

$$
R=m-1
$$

else
$\mathrm{L}=\mathrm{m}+1$
Return R + 1

Rotated Array

Find the pivot point of the following array after rotation.
Before: 2,3,4,5,6,8
After: 4,5,6,8,2,3

Solution

$\mathrm{L}=0, \mathrm{R}=\mathrm{n}-1$
$f(x)$: checks if x is less than the first element.

4567823
 0000011

Finding Peak

Find the maximum element in the sequence 2,3,4,5,6,9,12,11,8,6,4,1

Solution

$f(I)=1, f(r)=0$
$f(x)$: check if $x>x-1$ or is the first element

We will modify our template.

Copy Machine

Given an original copy, make n copies. You have two copier, the first one finishes the job in x seconds, the other in y seconds. Find the minimum required time.

Example:
411
It takes 3 seconds
512
It takes 4 seconds

Copy Machine

- Search for the minimum time sufficient for n copies to be made.
- $\mathrm{f}(\mathrm{t})=$ Can you make n copies in t time using the provided machines?
f(T)
$\mathrm{T}-=\min (\mathrm{x}, \mathrm{y})$
if(T < 0) return false;
Else return (time / x + time / y + 1) >= n

$\max (\min ())$ Problem

There are n stalls in a straight line. Place k cows into the stalls such that their minimum distance is maximized.

(2)	(4)	8)		16
		x 0	¢ 0	x

(1) $(2) \quad(3)(4)$

(2)	(5)	(7)	11	15	20

Approach

- We are looking for the minimum "distance", thus, we can search a range of candidate number and verify its validity.
- To maximize it, we will find the last valid distance.

$111111111100 \ldots . .0$
 01234567891011 20

- What verifies the validity of a candidate x ?

Check each segment, if it's greater or equal to x . Add to count. When count equals |cows|, it's valid.

Solution

9 is the maximum possible distance between the two closest cows.

