LECTURE 2

EFFICIENCY

Po Hao Chen
June 4, 2023

BOSTON
 UNIVERSITY

Efficiency

Objectives

- Understand when we need efficient algorithms
- Recognizing the strategies to design our algorithms

Time Complexity of the Algorithm

- Optimization is often needed to pass tough test cases. As a programmer, we need to make sure our algorithm doesn't breaks assuming the input is not unreasonable
- How do we know how "good" our algorithm needs to be?
- For a general computer processor (If we want to solve within a reasonable time):
- $\mathrm{O}(1)$ or $\mathrm{O}(\operatorname{logn})-n>10^{8}$
- Linear: $\mathrm{O}(n)-n \leq 10^{8}$
- Logarithmic: $\mathrm{O}(n \log n)-n \leq 10^{6}$
- Quadratic: $O\left(n^{2}\right)-n \leq 10^{4}$
- Cubic: $\mathrm{O}\left(n^{3}\right)-n \leq 500$
- Quartic: $\mathrm{O}\left(n^{4}\right)-n \leq 100$
- Exponential: $\mathrm{O}\left(2^{n}\right)-n \leq 25$

Example: Missing Number

- You are given all numbers between $1,2, \ldots, \mathrm{n}$ except one. Your task is to find the missing number.
- Constraint: $2 \leq \mathrm{n} \leq 2 * 10^{5}$
- Example:
$5 \leftarrow \mathrm{n}$
$2315 \leftarrow$ the numbers we have
- Output: 4

Approach?

- Sort the array and enumerate the array, find the missing element. Complexity?
- Read input and store them in hashtable
- Complexity? Space?

Optimal Solution

- Take the total in $\mathrm{O}(1)$, subtract each item in linear time. What remains is the missing number.
- Summation formula: $\sum_{i=1}^{n}=\frac{n(n+1)}{2}$
- O(n) Time and O(1) Space
- This will satisfy the time constraint set by the problem given the input can be up to $2 * 10^{5}$

Bruteforce

- While some problems have elegant solutions, it is possible to bruteforce the answer given that the input constraint is loose.
- Bitmask Trick:

```
int n = 3;
int A[] = {1,2,3};
for(int i = 0 ; i < (1 << n) ; i++){
    for(int j = 0 ; j < n ; j++){
        if ( i & (1 << j) ){
        cout << A[j] << , ';
        }
    }
    cout << '\n';
}
```


Example: Preparing Olympiad (CF)

- Given n problems, you estimate the i -th one to have difficulty C_{i}.
- Create a problemset such that each contains at least 2 problems.
- Total difficutly D must be $L \leq D \leq R$
- The hardest problem and the easiest problem must differ at least x
- Given n, L, R, x. Find the number of ways to choose the problemset that satsifies the constraints.
- Constraint: $1 \leq n \leq 15,1 \leq L \leq R \leq 10^{9}, 1 \leq x \leq 10^{6}$
- Example:

3561
123

Example: Beautiful Subgrid (CSES)

- Given $n \times n$ grid, a subgrid is beautiful if all four of its corner are colored black.
- How many beautiful subgrids? (4 in this picture, can you find them?)

Solution: 4 beautiful subgrids

Using Bits

- We represent each square as $0 / 1$. If it's colored we set it to 1 .

- We get a binary matrix:

Strategy

- Our matrix:

00010
11111
00110
11001
00010

- we need to check each pair, and compute the number of beautiful subgrids
- Observation:
- A beautiful subgrid is formed when there are 2 valid sides
- Each side is only valid, if there are two colored (vertically) opposing each other
- If find n valid sides between 2 rows, we can find the different combinations using $\binom{n}{2}$

(BONUS) Input Efficiency

- We can also improve the time efficiency of our algorithm by changing how we read the input.
- For example: adjacency list vs adjacency matrix

Example: Graph Path

Consider a directed graph that has n nodes and m edges. Your task is to count the number of paths from node 1 to node n with exactly k edges.

We can iterate each vertex, and keep track of the count of edges we have currently used. Try to reach the destination, if the count equal to k we add it to our solution
Input:
12, $23,31,32$

Strategy 1

Consider a directed graph that has n nodes and m edges. Your task is to count the number of paths from node 1 to node n with exactly k edges.

With Adjacency List:

- We can iterate each vertex, and keep track of the count of edges we have currently used. Try to reach the destination, if the count equal to k we add it to our solution
- Complexity: $O\left(V^{k}\right)$

Strategy 2

Consider a directed graph that has n nodes and m edges. Your task is to count the number of paths from node 1 to node n with exactly k edges.

With Adjacency Matrix:

- Raise the matrix M to the power of k
- Our answer is $M[0][n-1]$
- Complexity: $O\left(V^{3} \log k\right)$

Test Cases

Example 1:

$$
M=\left[\begin{array}{l}
010 \\
001 \\
110
\end{array}\right]
$$

$$
M^{2}=\left[\begin{array}{l}
010 \\
001 \\
110
\end{array}\right] *\left[\begin{array}{l}
010 \\
001 \\
110
\end{array}\right]=\left[\begin{array}{l}
001 \\
110 \\
011
\end{array}\right]
$$

There is one path from Node 1 to Node 3 with 2 edges
$1 \rightarrow 2 \rightarrow 3$
Look at the entry $(0,2)$ of M^{2} (0-based index)

