
LECTURE 2

EFFICIENCY

Po Hao Chen

June 4, 2023

Efficiency

Efficiency

Objectives

• Understand when we need efficient algorithms

• Recognizing the strategies to design our algorithms

1

Efficiency

Time Complexity of the Algorithm

• Optimization is often needed to pass tough test cases. As a

programmer, we need to make sure our algorithm doesn’t breaks

assuming the input is not unreasonable

• How do we know how ”good” our algorithm needs to be?

• For a general computer processor (If we want to solve within a

reasonable time):

• O(1) or O(logn) - n > 108

• Linear: O(n) - n ≤ 108

• Logarithmic: O(nlogn) - n ≤ 106

• Quadratic: O(n2) - n ≤ 104

• Cubic: O(n3) - n ≤ 500
• Quartic: O(n4) - n ≤ 100
• Exponential: O(2n) - n ≤ 25

2

Efficiency

Example: Missing Number

• You are given all numbers between 1,2,. . . ,n except one. Your task

is to find the missing number.

• Constraint: 2 ≤ n ≤ 2 ∗ 105

• Example:

5 ← n

2 3 1 5 ← the numbers we have

• Output: 4

3

Efficiency

Approach?

• Sort the array and enumerate the array, find the missing element.

Complexity?

• Read input and store them in hashtable

• Complexity? Space?

4

Efficiency

Optimal Solution

• Take the total in O(1), subtract each item in linear time. What

remains is the missing number.

• Summation formula:
∑n

i=1 = n(n+1)
2

• O(n) Time and O(1) Space

• This will satisfy the time constraint set by the problem given the

input can be up to 2 ∗ 105

5

Efficiency

Bruteforce

• While some problems have elegant solutions, it is possible to

bruteforce the answer given that the input constraint is loose.
• Bitmask Trick:

int n = 3;

int A[] = {1,2,3};

for(int i = 0 ; i < (1 << n) ; i++){

for(int j = 0 ; j < n ; j++){

if (i & (1 << j)){

cout << A[j] << ’ ’;

}

}

cout << ’\n’;

}

6

Efficiency

Example: Preparing Olympiad (CF)

• Given n problems, you estimate the i-th one to have difficulty Ci .

• Create a problemset such that each contains at least 2 problems.

• Total difficutly D must be L ≤ D ≤ R

• The hardest problem and the easiest problem must differ at least x

• Given n,L,R,x. Find the number of ways to choose the problemset

that satsifies the constraints.

• Constraint: 1 ≤ n ≤ 15, 1 ≤ L ≤ R ≤ 109, 1 ≤ x ≤ 106

• Example:

3 5 6 1

1 2 3

7

Efficiency

Example: Beautiful Subgrid (CSES)

• Given nxn grid, a subgrid is beautiful if

all four of its corner are colored black.

• How many beautiful subgrids? (4 in

this picture, can you find them?)

8

Efficiency

Solution : 4 beautiful subgrids 9

Efficiency

Using Bits

• We represent each square as 0/1. If it’s colored we set it to 1.

• We get a binary matrix:

10

Efficiency

Strategy

• Our matrix:

00010

11111

00110

11001

00010

• we need to check each pair, and compute the number of beautiful

subgrids

• Observation:

• A beautiful subgrid is formed when there are 2 valid sides
• Each side is only valid, if there are two colored (vertically) opposing

each other
• If find n valid sides between 2 rows, we can find the different

combinations using
(
n
2

)
11

Efficiency

(BONUS) Input Efficiency

• We can also improve the time efficiency of our algorithm by

changing how we read the input.

• For example: adjacency list vs adjacency matrix

12

Efficiency

Example: Graph Path

Consider a directed graph that has n nodes and m edges. Your task is to

count the number of paths from node 1 to node n with exactly k edges.

We can iterate each vertex, and keep track of the count of edges we have

currently used. Try to reach the destination, if the count equal to k we

add it to our solution
Input:

1 2, 2 3, 3 1, 3 2

13

Efficiency

Strategy 1

Consider a directed graph that has n nodes and m edges. Your task is to

count the number of paths from node 1 to node n with exactly k edges.

With Adjacency List:

• We can iterate each vertex, and keep track of the count of edges we

have currently used. Try to reach the destination, if the count equal

to k we add it to our solution

• Complexity: O(V k)

14

Efficiency

Strategy 2

Consider a directed graph that has n nodes and m edges. Your task is to

count the number of paths from node 1 to node n with exactly k edges.

With Adjacency Matrix:

• Raise the matrix M to the power of k

• Our answer is M[0][n − 1]

• Complexity: O(V 3logk)

15

Efficiency

Test Cases

Example 1:

M =

010

001

110

 M2 =

010

001

110

∗
010

001

110

 =

001

110

011

There is one path from Node 1 to Node 3 with 2 edges

1→ 2→ 3

Look at the entry (0,2) of M2 (0-based index)

16

	Efficiency

