LECTURE 12

FAST FOURIER TRANSFORM

Po Hao Chen 4/15 2022

Fast Fourier Transform

Objectives

- What is FFT? Black Magic
- Transforming our problems into polynomials
- FFT Variants

What is FFT?

- It is the fast algorithm for Fourier Transform, O(nlogn)
- Without being overly technical, it is just fast polynomial multiplication
- We can use it to do fast convolution with two arrays.
- Convolution: $C_p = (A * B)_p = \sum_{i * j = p} A_i B_j$

Applications

- If we can formulate our problem into polynomials, we can potentially solve the problem more efficiently with FFT
- Let's illustrate with an example.

Example: Find all possible sums of two arrays

Naive Solution $O(n^2)$:

• Example: A =[1,2,3]

 $\mathsf{B}=[2,\!4]$

- 1 + 2 = 3
 - 1 + 4 = 5

2 + 2 = 4

2 + 4 = 6

3 + 2 = 5

3 + 4 = 7

set<int> s; for(int i = 0 ; i < 3 ; i++){ for(int j = 0 ; j < 2 ; j++){ s.insert(A[i] + B[j]); } }

Transforming our input

- Our input:
 - $\begin{array}{l} \mathsf{A} = [1,2,3] \\ \mathsf{B} = [2,4] \end{array}$
- Let us represent A and B as polynomials by taking the number to the exponents:
 A = x¹ + x² + x³
 B = x² + x⁴
- Take A as example, the coefficient represents the number of 1s, 2s, 3s in the original array. (i.e 1 * x¹ + 1 * x² + 1 * x³)

O(nlogn) optimization

 $\bullet\,$ Take our polynomial A and B and multiply them

$$(x^{1} + x^{2} + x^{3}) * (x^{2} + x^{4}) = (x^{3} + x^{4} + 2x^{5} + x^{6} + x^{7})$$

- This says:
 - 3 can be formed in 1 way
 - 4 1 way
 - 5 2 ways
 - 6 1 way
 - 7 1 way
- FFT occurs at the multiplication step We can do CONV([0,1,1,1,0], [0,0,1,0,1]) \rightarrow [0,0,0,1,1,2,1,1]

Example: With a single array

- What if we want to find all the possible sums of a single array?
- A = [1,2,3]
- Output:
 - $1 \\ 2 \\ 3 \\ 1 + 3 = 4 \\ 2 + 3 = 5$
- We can simply perform CONV(A_p, A_p) then take care of the duplicates.

Denote A_p as A's polynomial form.

Example: All Substrings Hamming Distance

Given two binary strings A and B with the length of N and M respectively. You need to calculate the Hamming distance between B and **every sub-strings** of length M of A

- Example: 1010 A 100 B
- Output:
 - 1, 2

Consider a simpler version of the problem

- If we want to calculate the hamming distance of two binary strings In C++:

```
__builtin_popcnt(a^b)
```

Complexity: O(n)

• Doing it for all substring will take $O(n^2)$

Fast Fourier Transform

Using FFT

- Given string A (100101) B (110)
- f: $conv(A, B_r)$
- Denote B_r as the reversal of B. Pad 0s to match A's length.
- compute f with conv([1,0,0,1,0,1], [0.1,1,0,0,0]) = [0,1,1,0,1,1]
- f[2] contains the number of 1 that matches between 100, 110
- Observation:
 - We are taking a stride of 3 and convolving B against A.
 - f computes the 1's that matches
 - if we compute the #0's that matches in some way we can find the hamming distance

Complement

Find the #0's that match

- A (100101) B (110)
- f^c : conv (A^c, B^c_r)
- $A^{c} = 011010$

•
$$B^c = 001 \rightarrow_{reverse+pad} \rightarrow B^c_r = 100000$$

•
$$f^c = [0, 1, 1, 0, 1, 0]$$

Hamming Distance between A and B: $N - max(f[i] + f^c[i])$ for $m - 1 \le i \le n - 1$ For each substring of A w/ length M: $M - (f[i] + f^c[i])$ for $0 \le i \le n - 1$ Complexity: O(nlogn)

Variants

- FFT can be extended and be more powerful
- Number theoretic transform allows you to compute coefficients modulo some prime number p (only works with integer)
- Fast Walsh Hadamard Transforms allows you to do bitwise xor, or, and convolution