LECTURE 12
FAST FOURIER TRANSFORM

Po Hao Chen
4/15 2022

BOSTON
UNIVERSITY

Fast Fourier Transform

Fast Fourier Transform
080000000000

Objectives

® What is FFT? Black Magic
® Transforming our problems into polynomials

® FFT Variants

Fast Fourier Transform
O0@000000000

What is FFT?

It is the fast algorithm for Fourier Transform, O(nlogn)

Without being overly technical, it is just fast polynomial
multiplication

® We can use it to do fast convolution with two arrays.

® Convolution: C, = (A% B)p, =) AiB;

ixj=p

Fast Fourier Transform
[e]e]e] lelelelelolelo]e)

Applications

® If we can formulate our problem into polynomials, we can potentially
solve the problem more efficiently with FFT

® |et's illustrate with an example.

Fast Fourier Transform
000080000000

Example: Find all possible sums of two arrays

Naive Solution O(n?):

® Example:
A =[1,2,3] set<int> s;

B =[24] for(int i =0 ;i < 3 ; i++){
e1+2=3 for(int j =0 ; j <2 ; j+H{

1+4=5 s.insert(A[i] + B[jl);
242=4 b
24+4=6 b
3+2=5
34+4=7

Fast Fourier Transform
000008000000

Transforming our input

® Qur input:
A=1[123]
B =[24]

® |et us represent A and B as polynomials by taking the number to
the exponents:
A=x+x2+x3
B=x2+x*

® Take A as example, the coefficient represents the number of 1s, 2s,
3s in the original array. (i.e 1% x! 4+ 1% x% + 1% x3)

Fast Fourier Transform
000000800000

O(nlogn) optimization

® Take our polynomial A and B and multiply them
(Xl —|—X2—|—X3) * (X2+X4) —
(x3 4 x* +2x5 4+ x5 + x7)

® This says:
3 can be formed in 1 way
4 ... 1 way
5. 2 ways
6 ... 1 way
T ... 1 way

® FFT occurs at the multiplication step
We can do CONV([0,1,1,1,0], [0,0,1,0,1]) — [0,0,0,1,1,2,1,1]

Fast Fourier Transform
000000080000

Example: With a single array

® What if we want to find all the possible sums of a single array?
° A=11.273]
e Qutput:
1
2
3
1+3=4
2+3=5
® We can simply perform CONV(A,,A,) then take care of the
duplicates.

Denote A, as A's polynomial form.

Fast Fourier Transform
000000008000

Example: All Substrings Hamming Distance

Given two binary strings A and B with the length of N and M
respectively. You need to calculate the Hamming distance between B and
every sub-strings of length M of A

® Example:
1010 A
100 B

® Qutput:
1,2

Fast Fourier Transform
000000000800

Consider a simpler version of the problem

® If we want to calculate the hamming distance of two binary strings
In C++:

__builtin_popcnt(a”b)
Complexity: O(n)
® Doing it for all substring will take O(n?)

Fast Fourier Transform
000000000080

Using FFT

Given string A (100101) B (110)
f: conv(A, B,)
Denote B, as the reversal of B. Pad 0s to match A’s length.

® compute f with conv([1,0,0,1,0,1], [0.1,1,0,0,0])
=[0,1,1,0,1,1]

f[2] contains the number of 1 that matches between 100, 110

Observation:
® We are taking a stride of 3 and convolving B against A.
® f computes the 1's that matches
® if we compute the #0’s that matches in some way we can find the
hamming distance

10

Fast Fourier Transform
00000000000 e

Complement

Find the #0’s that match

* A (100101) B (110)

® f<: conv(AS, Bf)

® A =011010

® B¢ =001 —everse+pad— BF = 100000

® f¢=10,1,1,0,1,0]
Hamming Distance between A and B:
N — max(f[i] + fe[i]) form—1<i<n-1
For each substring of A w/ length M:
M—(fli]+fe[i]) for0<i<n-—1
Complexity: O(nlogn)

11

FFT Variants

FFT Variants
oe

Variants

® FFT can be extended and be more powerful

® Number theoretic transform allows you to compute coefficients
modulo some prime number p (only works with integer)

® Fast Walsh Hadamard Transforms allows you to do bitwise xor, or,

and convolution

12

	Fast Fourier Transform
	FFT Variants

