LECTURE 12

FAST FOURIER TRANSFORM

Po Hao Chen
4/15 2022

BOSTON

UNIVERSITY

Fast Fourier Transform

Objectives

- What is FFT? Black Magic
- Transforming our problems into polynomials
- FFT Variants

What is FFT?

- It is the fast algorithm for Fourier Transform, O (nlogn)
- Without being overly technical, it is just fast polynomial multiplication
- We can use it to do fast convolution with two arrays.
- Convolution: $C_{p}=(A * B)_{p}=\sum_{i * j=p} A_{i} B_{j}$

Applications

- If we can formulate our problem into polynomials, we can potentially solve the problem more efficiently with FFT
- Let's illustrate with an example.

Example: Find all possible sums of two arrays

Naive Solution $O\left(n^{2}\right)$:

- Example:
$A=[1,2,3]$
$B=[2,4]$
- $1+2=3$
$1+4=5$
$2+2=4$
$2+4=6$
$3+2=5$
$3+4=7$

Transforming our input

- Our input:
$\mathrm{A}=[1,2,3]$
$B=[2,4]$
- Let us represent A and B as polynomials by taking the number to the exponents:
$\mathrm{A}=x^{1}+x^{2}+x^{3}$
$\mathrm{B}=x^{2}+x^{4}$
- Take A as example, the coefficient represents the number of $1 \mathrm{~s}, 2 \mathrm{~s}$, 3 s in the original array. (i.e $1 * x^{1}+1 * x^{2}+1 * x^{3}$)

$O(n \operatorname{logn})$ optimization

- Take our polynomial A and B and multiply them

$$
\begin{aligned}
& \left(x^{1}+x^{2}+x^{3}\right)^{*}\left(x^{2}+x^{4}\right)= \\
& \left(x^{3}+x^{4}+2 x^{5}+x^{6}+x^{7}\right)
\end{aligned}
$$

- This says:

3 can be formed in 1 way
4 1 way
5 2 ways
6 1 way
7 1 way

- FFT occurs at the multiplication step

We can do $\operatorname{CONV}([0,1,1,1,0],[0,0,1,0,1]) \rightarrow[0,0,0,1,1,2,1,1]$

Example: With a single array

- What if we want to find all the possible sums of a single array?
- $\mathrm{A}=[1,2,3]$
- Output:

1
2
3
$1+3=4$
$2+3=5$

- We can simply perform $\operatorname{CONV}\left(A_{p}, A_{p}\right)$ then take care of the duplicates.
Denote A_{p} as A 's polynomial form.

Example: All Substrings Hamming Distance

Given two binary strings A and B with the length of N and M respectively. You need to calculate the Hamming distance between B and every sub-strings of length M of A

- Example:

1010 A 100 B

- Output:

1, 2

Consider a simpler version of the problem

- If we want to calculate the hamming distance of two binary strings In C++:
__builtin_popent(a^b)
Complexity: $O(n)$
- Doing it for all substring will take $O\left(n^{2}\right)$

Using FFT

- Given string A (100101) B (110)
- f: $\operatorname{conv}\left(A, B_{r}\right)$
- Denote B_{r} as the reversal of B . Pad $0 s$ to match A's length.
- compute f with $\operatorname{conv}([1,0,0,1,0,1],[0.1,1,0,0,0])$ $=[0,1,1,0,1,1]$
- $\mathrm{f}[2]$ contains the number of 1 that matches between 100,110
- Observation:
- We are taking a stride of 3 and convolving B against A.
- f computes the 1 's that matches
- if we compute the $\# 0$'s that matches in some way we can find the hamming distance

Complement

Find the \#0's that match

- A (100101) B (110)
- $f^{c}: \operatorname{conv}\left(A^{c}, B_{r}^{c}\right)$
- $A^{c}=011010$
- $B^{c}=001 \rightarrow_{\text {reverse }+ \text { pad }} \rightarrow B_{r}^{c}=100000$
- $f^{c}=[0,1,1,0,1,0]$

Hamming Distance between A and B :
$N-\max \left(f[i]+f^{c}[i]\right)$ for $m-1 \leq i \leq n-1$
For each substring of $A w /$ length M :
$M-\left(f[i]+f^{c}[i]\right)$ for $0 \leq i \leq n-1$
Complexity: $\mathrm{O}($ nlogn $)$

FFT Variants

Variants

- FFT can be extended and be more powerful
- Number theoretic transform allows you to compute coefficients modulo some prime number p (only works with integer)
- Fast Walsh Hadamard Transforms allows you to do bitwise xor, or, and convolution

