
LECTURE 10

CONVEX HULL TRICK

Po Hao Chen

4/8 2022



Convex Hull



Convex Hull

What is a convex hull?

• Convex Hull is the smallest

convex set that contains ALL

points

• For the mathematicians:

∀x , y ∈ C , λx + (1− λ)y ∈ C

conv(S): {
∑
λixi}, where

xi ∈ S , λ ∈ ∆k , k ∈ N

1



Convex Hull

Dynamic Programming

There are n staircases, each one has a height of hi .

The cost to go from i to j is (hj − hi )
2 + C .

What is the minimum cost to reach the last staircase from the first?

Constraint: n ≤ 2 ∗ 105

2



Convex Hull

Dynamic Programming

Statement: There are n staircases, each one has a height of hi .

The cost to go from i to j is (hj − hi )
2 + C .

What is the minimum cost to reach the last staircase from the first?

DP Recurrence: dp[j] = mini≤j(dp[i ] + (hj − hi )
2 + C )

Time Complexity: O(n2)

3



Convex Hull

Geometry to Optimizes DP

The Convex Hull Trick is a dynamic programming optimization technique,

it speeds up the time complexity by exploiting geometric properties.

4



Convex Hull

The Intersection Point

Notice that the segment is only optimal till the intersection point with

another line.

y = m1x + c1 and y = m2x + c2
m1x + c1 = m2x + c2 → x = c2−c1

m1−m2

Observation: The above formula shows the optimal segments.

5



Convex Hull

Code

We will create a custom struct for line.

• Initialize with slope and y-intercept (b).

• Evaluate y = mx+b;

• Calculate intersection with another line.

(take ceiling using d xy e = x+y−1
y )

6



Convex Hull

LineContainer

We will maintain a dequeue-like data structure sorted by the optimal

intersection x value.

It holds the (line , optimal x)

• Add new lines

• Supports query for y

7



Convex Hull

Rewriting Recurrence

Expand:

dp[j ] = dp[i ] + (hj − hi )
2 + C = dp[i ] + h2j − 2hjhi + h2i + C

Observation: For some j, the highlighted terms stay constant

dp[i ] + h2j − 2hjhi + h2i + C

Rearrange the terms, and let hj be x since we want to find the minimal y

for hj .

−2hjhi + (h2i + dp[i ]) + h2j + C

y = mx + b where m = −2hi , b = h2i + dp[i ], x = hj ,

8



Convex Hull

Adding a Line

9



Convex Hull

Adding a Line

10



Convex Hull

Monotonicity

y = mx + b where m = −2hi , x = hj , b = h2i + dp[i ]

The slopes are monotonic.

for each x = hj , the problem hints hj < hj+1, thus queries are monotonic.

11



Convex Hull

Monotonicity

12



Convex Hull

Query

Monotonicity determines the time complexity of our optimized algorithm.

• If slopes and queries are both monotone. We keep removing lines

until query hj is ≥ to x.

• If only slopes are monotone. Do not remove lines. Perform binary

search to find the first x that our query hj is ≥ to x.

• If slopes and queries are non-monotone. We will need a dynamic

data-structure known as Li-Chao Tree.

13



Convex Hull

Solution with Convex Trick

Recurrence: −2hjhi + (h2i + dp[i ]) + h2j + C

y = mx + b where m = −2hi , b = h2i + dp[i ], x = hj

• dp[0] = 0

• Initialize the first line

• dp[j] = query(h[j]) + h2j + c

• addLine(m,b)

• dp[n-1] contains answer

14


	Convex Hull

