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What is a convex hull?

° ® Convex Hull is the smallest
convex set that contains ALL

convex .
not convex poi nts

® For the mathematicians:
Vx,y e C, >x+(1—-ANyecC
conv(S): {d_ Aixi}, where
X,'ES7)\€A;(,/(€N
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Dynamic Programming

There are n staircases, each one has a height of h;.
The cost to go from i to jis (h; — h;)? + C.

What is the minimum cost to reach the last staircase from the first?
Constraint: n < 2 % 10°

hn
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Dynamic Programming

Statement: There are n staircases, each one has a height of h;.
The cost to go from i to jis (h; — h;)? + C.

What is the minimum cost to reach the last staircase from the first?
DP Recurrence: dp[j] = min;<;(dpli] + (h; — h;)> + C)

Time Complexity: O(n?)
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Geometry to Optimizes DP

The Convex Hull Trick is a dynamic programming optimization technique,

it speeds up the time complexity by exploiting geometric properties.
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The Intersection Point

Notice that the segment is only optimal till the intersection point with
another line.
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y=mx-+c and y = max + ¢
&D—C

mXx-+Cc=mx+c—Xx= prs——

Observation: The above formula shows the optimal segments.
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Code

We will create a custom struct for line.
® Initialize with slope and y-intercept (b).
® Evaluate y = mx+b;
® (Calculate intersection with another line.

x+y—1 )

(take ceiling using fﬂ =y
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LineContainer

We will maintain a dequeue-like data structure sorted by the optimal
intersection x value.
It holds the (line , optimal x)

® Add new lines

® Supports query for y
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Rewriting Recurrence

Expand:
dplj] = dpli] + (hj — hi)> + C = dpli] + h7 — 2h;h; + h? + C

Observation: For some j, the highlighted terms stay constant

dpli] + h? — 2hjhi + h7 + C

Rearrange the terms, and let h; be x since we want to find the minimal y
for hj.

—2hjhj + (h? + dp[i]) + h? + C
y = mx + b where m = —2h;, b = h? + dp[i], x = hj,
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Adding a Line



Adding a Line
add_line(slope, y-intercept):
create with input parameters
while( at least 2 lines exists &&

is to the left of last line )|
remove last_line from container

if( container is empty ):
add with intersection of O
else:
add with intersection of “current” last_line
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Monotonicity

y = mx + b where m = —2h;, x = h;, b = h? + dpli]

The slopes are monotonic.

for each x = h;, the problem hints h; < hj;1, thus queries are monotonic.
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Monotonicity
Remove
~— query(x):
while(at least an intersection exists):
\ if (second tc st line’s intersection less than x):
\ remove the oldest line
else break

return the eval(x) with the appropriate line (the oldest remaining)

campa
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Query

Monotonicity determines the time complexity of our optimized algorithm.

® |f slopes and queries are both monotone. We keep removing lines
until query h; is > to x.
® |f only slopes are monotone. Do not remove lines. Perform binary

search to find the first x that our query h; is > to x.

® |f slopes and queries are non-monotone. We will need a dynamic
data-structure known as Li-Chao Tree.
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Solution with Convex Trick

Recurrence: —2h;h; + (h7 + dp[i]) + h? + C
y = mx + b where m = —2h;, b = h? + dp[i], x = h;

dp[0] =0

Initialize the first line

dpli] = query(h[]]) + h7 +c
addLine(m,b)

dp[n-1] contains answer
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