LECTURE 10
CONVEX HULL TRICK

Po Hao Chen
4/8 2022

BOSTON
UNIVERSITY

Convex Hull

Convex Hull
0800000000000 00

What is a convex hull?

° ® Convex Hull is the smallest
convex set that contains ALL

convex .
not convex poi nts

® For the mathematicians:
Vx,y e C, >x+(1—-ANyecC
conv(S): {d_ Aixi}, where
X,'ES7)\€A;(,/(€N

Convex Hull

Convex Hull

0080000000000 00

Dynamic Programming

There are n staircases, each one has a height of h;.
The cost to go from i to jis (h; — h;)? + C.

What is the minimum cost to reach the last staircase from the first?
Constraint: n < 2 % 10°

hn
Tn

Convex Hull
0008000000000 00

Dynamic Programming

Statement: There are n staircases, each one has a height of h;.
The cost to go from i to jis (h; — h;)? + C.

What is the minimum cost to reach the last staircase from the first?
DP Recurrence: dp[j] = min;<;(dpli] + (h; — h;)> + C)

Time Complexity: O(n?)

Convex Hull
0000800000000 00

Geometry to Optimizes DP

The Convex Hull Trick is a dynamic programming optimization technique,

it speeds up the time complexity by exploiting geometric properties.
V4

| /
/|

"y=0x+2

Convex Hull
0000080000000 00

The Intersection Point

Notice that the segment is only optimal till the intersection point with
another line.

5

y=-x+4 y=x-1

o

E 0 2 7 []

y=mx-+c and y = max + ¢
&D—C

mXx-+Cc=mx+c—Xx= prs——

Observation: The above formula shows the optimal segments.

Convex Hull
0000008000000 00

Code

We will create a custom struct for line.
® Initialize with slope and y-intercept (b).
® Evaluate y = mx+b;
® (Calculate intersection with another line.

x+y—1)

(take ceiling using fﬂ =y

Convex Hull
0000000800000 00

LineContainer

We will maintain a dequeue-like data structure sorted by the optimal
intersection x value.
It holds the (line , optimal x)

® Add new lines

® Supports query for y

Convex Hull
0000000080000 00

Rewriting Recurrence

Expand:
dplj] = dpli] + (hj — hi)> + C = dpli] + h7 — 2h;h; + h? + C

Observation: For some j, the highlighted terms stay constant

dpli] + h? — 2hjhi + h7 + C

Rearrange the terms, and let h; be x since we want to find the minimal y
for hj.

—2hjhj + (h? + dp[i]) + h? + C
y = mx + b where m = —2h;, b = h? + dp[i], x = hj,

Convex Hull
0000000008000 00

Adding a Line

Adding a Line
add_line(slope, y-intercept):
create with input parameters
while(at least 2 lines exists &&

is to the left of last line)|
remove last_line from container

if(container is empty):
add with intersection of O
else:
add with intersection of “current” last_line

10

Convex Hull
00000000000 e000

Monotonicity

y = mx + b where m = —2h;, x = h;, b = h? + dpli]

The slopes are monotonic.

for each x = h;, the problem hints h; < hj;1, thus queries are monotonic.

11

Convex Hull
000000000000 e00

Monotonicity
Remove
~— query(x):
while(at least an intersection exists):
\ if (second tc st line’s intersection less than x):
\ remove the oldest line
else break

return the eval(x) with the appropriate line (the oldest remaining)

campa

12

Convex Hull
0000000000000 e0

Query

Monotonicity determines the time complexity of our optimized algorithm.

® |f slopes and queries are both monotone. We keep removing lines
until query h; is > to x.
® |f only slopes are monotone. Do not remove lines. Perform binary

search to find the first x that our query h; is > to x.

® |f slopes and queries are non-monotone. We will need a dynamic
data-structure known as Li-Chao Tree.

13

Convex Hull
0000000000000 0e

Solution with Convex Trick

Recurrence: —2h;h; + (h7 + dp[i]) + h? + C
y = mx + b where m = —2h;, b = h? + dp[i], x = h;

dp[0] =0

Initialize the first line

dpli] = query(h[]]) + h7 +c
addLine(m,b)

dp[n-1] contains answer

14

	Convex Hull

